Beyond All Orders: Singular Perturbations in a Mapping

نویسنده

  • C. Amick
چکیده

We consider a family of q-dimensional (q > 1), volume-preserving maps depending on a small parameter ~. As e ---> 0 + these maps asymptote to flows which attain a heteroclinic connection. We show that for small ~ the heteroclinic connection breaks up and that the splitting between its components scales with e like ~ r exp [ / 3 / e ] . We estimate /3 using the singularities of the B ---> 0 ÷ heteroclinic orbit in the complex plane. We then estimate 3' using linearization about orbits in the complex plane. These estimates, as well as the assertions regarding the behavior of the functions in the complex plane, are supported by our numerical calculations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic expansion of the unstable manifold in a 4-dimensional symplectic mapping

A 1-dimensional sub-manifold of an unstable manifold in a 4-dimensional symplectic mapping is analytically obtained, using the method called asymptotic expansions beyond all orders. We obtain the condition with which homoclinic structure of the mapping is regarded as a direct product of 2-dimensional mappings.

متن کامل

Probing integrable perturbations of conformal theories using singular vectors II: N=1 superconformal theories

In this work we pursue the singular-vector analysis of the integrable perturbations of conformal theories that was initiated in [1]. Here we consider the detailed study of the N = 1 superconformal theory and show that all integrable perturbations can be identified from a simple singular-vector argument. We identify these perturbations as theories based on affine Lie superalgebras and show that ...

متن کامل

Mapped Chebyshev Pseudospectral Method to Study Multiple Scale Phenomena

In the framework of mapped pseudospectral methods, we introduce a new polynomialtype mapping function in order to describe accurately the dynamics of systems developing almost singular structures. Using error criteria related to the spectral interpolation error, the new polynomialtype mapping is compared against previously proposed mappings for the study of collapse and shock wave phenomena. As...

متن کامل

A Nyström-like Approach to Integral Equations with Singular Kernels

Traditional boundary element methods use panel-based discretization and exhibit low order convergence. In this paper, a new approach is proposed to discretize a singular integral equation. Global, numerically orthogonal bases are used to represent a solution, and mapping functions are used to represent the geometry. This method is capable of achieving spectral convergence, similar to the Nyströ...

متن کامل

Gravity beyond linear perturbations in the braneworld

In the present paper, we briefly review recent studies of second-order gravitational perturbations in braneworld models. After we consider the possibility of pathological behavior of gravity at higher orders of perturbation, second-order perturbations are discussed in Randall-Sundrum braneworld models. Because the mass spectra in these braneworld models are different, we analyze them using diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1990